NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD IRRIGATION WATER CONVEYANCE REINFORCED PLASTIC MORTAR PIPELINE (FT) CODE 430GG #### DEFINITION A pipe line and appurtenances installed in an irrigation system. #### SCOPE This standard applies to underground reinforced plastic mortar pipelines 8 to 54 in. in diameter. Pipelines more than 54 in. in diameter shall be installed under special design and specification requirements. The standard includes the design criteria for irrigation pipelines, the minimum installation requirements, and the specifications for the reinforced plastic mortar pipe to be used. It applies to pipelines with stands and vents open to the atmosphere and to pipelines not open to the atmosphere but provided with pressure-relief valves and air-and-vacuum valves. #### PURPOSE To prevent erosion or loss of water quality of damage to the land, to make possible the proper management of irrigation water, and to reduce water conveyance losses. #### CONDITIONS WHERE PRACTICE APPLIES All pipelines shall be planned and located to serve an integral part of an irrigation water distribution or conveyance system designed to facilitate the conservation use and management of the soil and water resources on a farm or group of farms. Water supplies quality, and rates of irrigation delivery for the area served by the pipeline shall be sufficient to make irrigation practical for the crops to be grown and the irrigation water application methods to be used. Reinforced plastic mortar pipelines installed under this standard shall be placed only in suitable soils where the bedding and backfill requirements can be fully met. PLANNING CONSIDERATIONS FOR WATER QUANTITY AND QUALITY ## Quantity Conservation practice standards are reviewed periodically, and updated if needed. To obtain the current version of this standard, contact the Natural Resources Conservation Service. - 1. Effects on the components of the water budget, especially on infiltration and evaporation. - 2. Effects on downstream flows or aquifers that would affect other water uses or users. - 3. Potential use of irrigation water management. - 4. Effects on installing pipeline on vegetation that may have been located next to the original conveyance. # Quality - 1. Effects of installing the pipeline (replacing other types of conveyances) on channel erosion or the movement of sediment and soluble and sediment-attached substances carried by water. - 2. Effects on the movement of dissolved substances into the soil, and on any percolation below the root zone or to ground water recharge. - Effects of controlled water delivery on the temperatures of water resources that could cause undesirable effects on aquatic and wildlife communities. - 4. Effects on wetlands or water-related wildlife habitats. - 5. Effects on the visual quality of water resources. ## DESIGN CRITERIA ## Working pressure The pipeline shall be designed to meet all service requirements without a static or working pressure at any point greater than the maximum allowable working pressure of the pile used at that point. The static or working pressure of pipelines open to the atmosphere shall include freeboard. The minimum acceptable work pressure class shall be pipe having a rated operating head of 50 ft of water. # Friction losses For design purposes, friction head losses shall be no less than those computed by the Hazen-Williams equation, using a roughness coefficient, c equal to 145. #### Flow velocity The design water velocity in the pipeline when operating at system capacity shall not exceed 5 ft/s. If this limit is exceeded, special considerations must be given to the flow conditions and measures to adequately protect the pipeline against surge. ## Capacity The design capacity of the pipeline shall be based on whichever of the following criteria is greater: - 1. The capacity shall be sufficient to deliver the volume of water required to meet the peak-period consumptive use of the crop or crops to be irrigated. - 2. The capacity shall be sufficient to provide an adequate irrigation stream for all methods of irrigation planned. #### Outlets Appurtenances to deliver water from the pipe system to the land, to a ditch reservoir, or to any surface pipe system shall be known as outlets. Outlets shall have adequate capacity at design working pressure to deliver the required flow to (1) The hydraulic gradeline of a pipe or ditch; (2) a point at least 6 in. above the field surface; (3) the design surface elevation in a reservoir; or (4) an individual sprinkler, lateral line, or other sprinkler line. ## Check valves A check valve shall be installed between the pump discharge and the pipeline if detrimental backflow may occur. Stands open to the atmosphere Stands shall be used wherever water enters the pipeline system to avoid entrapment of air, to prevent surge pressures, to avoid collapse due to negative pressures, and to prevent pressure from exceeding the maximum allowable working pressure of the pipe. Open stands may be required at other locations in low-head systems to perform other functions. Stands shall be constructed of steel pipe or other approved materials and shall be supported on a base adequate to support the stand and to prevent movement or undue stress on the pipeline. Open stands shall be designed to meet or exceed the following criteria: - 1. Each stand shall allow at least 1 ft of freeboard above design working head. The stand height above the centerline of the pipeline shall be of such that neither the static head nor the design working head plus freeboard will exceed the allowable working pressure of the pipe. - 2. The top of each stand shall extend at least 4 ft above the ground surface except for surface gravity inlets, which shall be equipped with trash racks and covers. - 3. Downward water velocities in stands shall not exceed 2 ft/s. The inside diameter of the stand shall not be less than the inside diameter of the pipeline. This downward velocity criterion applies only to stands having vertical offset inlets and outlets. - 4. If the water velocity in the inlet (from the pump or other water sources) equals or exceeds three times the velocity in the outlet pipeline, the centerline of the inlet shall have a minimum vertical offset from the centerline of the outlet at least equal to the sum of the diameters of the inlet and outlet pipes. - 5. The cross sectional area of stands may be reduced above a point 1 ft above the top of the upper inlet or outlet pipe, but the reduced cross section shall not be of such that it would produce an average velocity of more than 10 ft/s if the entire flow were discharging through it. - 6. Vibration-control measures, such as special couplers of flexible pipe, shall be provided, as needed, to insure that vibration from pump discharge pipes is not transmitted to stands. Sand traps, when combined with a stand, shall have a minimum inside dimension of 30 in. and shall be constructed so that the bottom is at least 24 in. below the invert of the outlet to the pipeline. The downward velocity of flow of the water in a sand trap shall not exceed 0.25 ft/s. Suitable provisions for cleaning sand traps shall be provided. Gate stands shall be of sufficient dimensions to accommodate the gate or gates and shall be large enough to make the gates accessible for repair. Float valve stands shall be large enough to provide accessibility for maintenance and to dampen surge. Stands closed to the atmosphere If pressure-relief valves and air-and vacuum valves are used instead of open stands, all requirements detailed under "Stands Open to the Atmosphere" shall apply except as modified below. The inside diameter of the closed stand shall be equal to or greater than that of the pipeline for at least 1 ft above the top of the uppermost inlet or outlet pipe. To facilitate attaching the pressure-relief valve and the air-and-vacuum valve, the stand may be capped at this point, or if additional height is required, the stand may be extended to the desired elevation by using the same inside diameter or a reduced cross section. If a reduced section is used, the cross sectional area shall be of such that it would produce an average velocity of no more than 10 ft/s if the entire flow were discharged through it. If no vertical offset is required between the pump discharge pipe and the outline pipeline and the discharge pie is "doglegged" below ground, the stand shall extend at least 1 ft above the highest part of the pump discharge pipe. An acceptable alternative design for stands requiring no vertical inlet offset (when inlet velocity is less than three times that of the outletting pipeline) shall be: - 1. Construct the dogleg section of the pump discharge pipe with the same nominal diameter as that of the pipeline. - 2. Install the pressure-relief valve and the air-and-vacuum valve on top of the upper horizontal section of the dogleg. Pressure-relief and air-and-vacuum valves shall be installed on stands with the nominal size pipe required to fit the valve's threaded inlets. #### Vents Vents must be designed into systems open to the atmosphere to provide for the removal and entry of air and protection from surge. They shall: - 1. Have a minimum freeboard of 1 ft above the hydraulic gradeline. The maximum height of the vent above the centerline of the pipeline must not exceed the maximum allowable working pressure of the pipe. - 2. Have a cross sectional area at least one-half the cross sectional area of the pipeline (both inside measurements) for a distance of at least one pipeline diameter up from the centerline of the pipeline. Above this elevation the vent may be reduced to 2 in. in diameter. These cross sectional requirements shall apply when an airand-vacuum valve is used instead of a vent, but the reduced section shall be increased to the nominal size pipe required to fit the valve's threaded inlet. An acceptable alternative is to install this valve in the side of a service outlet riser, provided that the riser is properly located and adequately sized. If an air-and-vacuum valve and a pressure-relief valve are required at the location, the 10 ft/s velocity criterion given under "Stands" shall apply to the reduced section. ## 3. Be located: - a. At the downstream end of each lateral, - b. At summits in the line. c. At points where there are changes in grade in a downward direction of flow or more than 10 degrees. ## Air-and-vacuum valves An air-and-vacuum valve, which has a large venting orifice, exhausts large quantities of air from the pipeline during filling operation and allows air to reenter the line and prevents a vacuum from forming during emptying operations. This type of valve is sometimes called air-vacuum-release valve or air-vent-and-vacuum-relief valve. It is not continuous acting because it does not allow further escape of air at working pressure once the valve closes. Air-and-vacuum valves may be used at any or all the locations listed under "Vents" instead of the vents. An air-and-vacuum valve also may be used in conjunction with a pressure-relief valve as an alternative to open stands. A pipeline is considered open to the atmosphere if at least one stand, vent, or service outlet is unclosed and located so that it cannot be isolated from the system by line gates or valves. On low-pressure pipelines not open to the atmosphere, air-and-vacuum valves shall be installed at all locations specified under "Vents," on all pump stands, and at inline control devices where there is a need for air removal and entry during filling and emptying operations. The diameter of the orifice (opening the controls air flow during filling and emptying operations) of an air-and vacuum valve shall equal or exceed that specified below for the appropriate diameter of the pipeline. Air-released and vacuum-release valve outlets shall be at least 1 in. diameter when specified for lines 5 to 8 in. in diameter, at least 2-in. outlets for lines 10 to 16 in. in diameter, at least 4-in. outlets for lines 18 to 28 in. in diameter, at least 6-in. outlets for lines 30 to 36 in. in diameter, and at least 8-in outlets for lines 38 to 48. in diameter. For pipelines larger than 16 in. diameter, 2-in. air-release valves may be used instead of the sizes indicated if they are supplemented with vacuum-release valves that provide a vacuum-release capacity equal to the sizes shown. Manufacturers of air-and-vacuum valves marketed for use under this standard shall provide dimensional data, which shall be the basis for selection and acceptance of these valves. ## Pressure-relief valves Pressure-relief valves may be used on low-pressure pipelines as an alternative to stands open to the atmosphere. A pressure- relief valve shall serve the pressure-relief function of the open stand or vent for which it is an alternative. A pressure relief valve shall be installed at the pump location if excessive pressure can build up when all valves are closed. Also, in closed systems where the line is protected from reversal of flow by a check valve and excessive surge pressures are likely to build up, a surge chamber or pressure-relief valve shall be installed close to the check valve on the side away from the pump. Pressure-relief valves shall be no smaller than 1/4 in. nominal size for each diameter inch of the pipeline and shall be set at a maximum of 5 lb/in. 2 above the pressure rating of the pipe. A pressure-relief valve or surge chamber shall be installed at the end of the pipeline if needed to relieve surge. The flow capacity of pressure-release valves shall be the pipeline design flow rate within a pipeline pressure no greater than 50 percent above the permissible working pressure for the pipe. The pressure at which the valve starts to open shall be marked on pressure-relief valves. Adjustable pressure-relief valves shall be sealed or otherwise altered to prevent changing of the adjustment from that marked on the valve. Manufacturers of pressure-relief valves marketed for use under this standard shall provide capacity tables, based on performance tests, that give the discharge capacities of the valves at the maximum permissible pressure and differential pressure settings. Such tables shall be the basis for design of pressure setting and of acceptable of these valves. #### Drainage Provisions shall be made for completely draining the pipeline if freezing temperatures are a hazard, draining is recommended by the manufacturer of the pipe, or drainage of the line is specified for the job. If provisions for drainage required, drainage outlets shall be located at all low places in the line. These outlets can drain into dry wells or to points of lower elevation. If drainage cannot be thus provided by gravity, provisions shall be made to empty the line by pumping or by other means. ## Flushing If provisions are needed for flushing the line free of sediment or other foreign material, a suitable valve shall be installed at the distal end of the pipeline. Thrust control Anchors or thrust blocks shall be provided on pipelines at abrupt changes in pipeline grade, changes in horizontal alinement, or reduction in pipe size to absorb any axial thrust of the pipeline. Thrust blocks may also be needed at the end of the pipeline and at inline control valves. The pipe manufacturer's recommendations for thrust control shall be followed. In the absence of such recommendations, the following formula shall be used in designing thrust blocks: 98 HD2 a A = B sin 2 #### Where: A=Bearing area of thrust block required H=Maximum working pressure in ft D=Inside diameter of pipe in ft B=Allowable bearing pressure of the soil in lb/ft2 a=Deflection angle of pipe bend Area of thrust blocks for dead ends and tees shall be 0.7 times the area of block required for a 90-deflection angle of pipe bend. If adequate soil tests are not available, the allowable bearing soil pressure may be estimated from the following: | | lb/ft2 | |--|--------| | Sound shale | 10,000 | | Cemented gravel and sand, difficult to | | | pick | 4,000 | | Coarse and fine compact sand | 3,000 | | Medium clay, can be spaded | 2,000 | | Soft clay | 1,000 | | Muck | 0 | The listed figures are applicable for a 4-ft cover measured from ground surface to the centerline of the thrust block. For other depths, divide the figures by 4 and multiply by the installation depth (in ft). Maximum depth of cover If the pipe is installed in a trench, the earth cover over the top of the pipe shall not exceed that given in table 1. If the pipe is installed in an embankment, the external load shall not exceed a load equivalent to the height of earth cover over the top of the pipe given in table 2. Table 1. Maximum cover for pipes installed in trenches | Pipe | Type 4 | Type 7 | Type 10 | |------------------------------------|----------------------------|----------------------------------|----------------------------------| | diameter | bedding | bedding | bedding | | in
8
10
12
14
15-16 | ft
35
23
18
15 | ft
35
35
35
35
35 | ft
35
35
35
35
35 | | 18-20 | 12 | 35 | 35 | | 21 | 11 | 35 | 35 | | 24 | 11 | 28 | 35 | | 27 | 10 | 25 | 35 | | 30 | 10 | 24 | 35 | | 33 | 10 | 23 | 35 | | 36 | 10 | 22 | 35 | | 39 | 10 | 21 | 35 | | 42 | 9 | 20 | 35 | | 45-54 | 9 | 19 | 35 | Table 2. - Maximum cover for pipes installed in embankments | Pipe
diameter | Type 4
bedding | Type 7
bedding | Type 10
bedding | |------------------------------------|--------------------------|----------------------------|----------------------------| | in
8
10
12
14
15-39 | ft
12
10
9
9 | ft
18
15
14
13 | ft
24
21
20
19 | | 42-54 | 7 | 13 | 19 | Note: Bedding conditions are given in figure 1 and in tables 5 and 6. Shape natural subgrade to fit the pipe to depth of D/10 by using a template or properly shaped excavating equipment. At the contractor's option, the subgrade may be excavated to 4 in. below the bottom of the pipe and backfilled with Class A material, Type 3 compaction. If the subgrade is rock contains rocks larger than 1 in. in diameter, or is unstable, excavate to a depth of 6 in. below the bottom of the pipe, backfill with Class A material, Type 3 compaction, and shape backfill as instructed above. Pipe must be in contact with the subgrade at all locations along the pipe (no higher or low spots except as needed for bell ends, rings, or fittings). Notes -- Show appropriate value on drawings: - bd = D + 18 in. for compaction by water saturation; bd = D + 36 in. for mechanical compaction. - 2. Hc = Height of fill used in design calculations. Figure 1. - Bedding conditions for pipe #### Materials All materials described and required in this standard shall meet or exceed the minimum requirements indicated in "Specifications for Materials." ## PLANS AND SPECIFICATIONS Plans and specifications for constructing reinforced plastic mortar irrigation pipelines shall be in keeping with this standard and shall describe the requirements for applying the practice to achieve its intended purposes. ### INSTALLATION Pipe shall be laid to the lines and grades as shown on the drawings and/or as staked in the field. ## Minimum depth of cover Pipe shall be installed at a sufficient depth below the ground surface to insure that the pipe is protected from damage imposed by traffic crossing, farming operations, freezing temperatures, or soil cracking. The minimum depth of cover shall be 24 in., but in soils susceptible to deep cracking, the cover shall be a minimum of 36 in. If the pipe must be placed at a lesser depth, adequate protection shall be provided by erecting fences or other surface barriers or by using suitable structural treatment to insure that excessive external loads are not transmitted to the pipe. The maximum depth of cover is given in tables 1 and 2 under "Design Criteria." ## Trench construction The pipe trench shall be straight enough so that the pipeline can be laid without unnecessary deflections at the joints. The width at any point below the top of the pipe shall be only wide enough to permit the pipe to be easily placed and joined and to allow the initial backfill material to be uniformly placed under the haunches and along the sides of the pipe. The maximum trench width shall not exceed 24 in. more than the pipe diameter. The trench bottom shall be uniform so that the pipe lays on the bottom without bridging. Clods, rocks, and uneven spots that can damage the pipe or cause nonuniform support shall be removed. If rocks, boulders, or any other material that can damage the pipe are encountered, the trench bottom shall be undercut a minimum of 4 in. below final grade and filled with bedding material consisting of sand or compacted fine-grained soils. Bell holes shall be excavated, as needed, to prevent the bells from coming into contact with the subgrade. Any water in the trench shall be drained away or otherwise removed, and pipe laying shall be delayed until a suitable firm base is obtained. At low places on the ground surface, extra fill may be placed over the pipeline to provide the minimum depth of cover. The top width of the fill shall be no less than 10 ft and the side slopes no steeper than 6 horizontal to 1 vertical. The fill material shall be placed and compacted before excavating the trench. If extra protection is needed at vehicular crossings, encasement pipe or other approved methods may be used. Provisions shall be made to insure safe working conditions if unstable soil, trench depth, or other conditions can impose a safety hazard to personnel working in the trench. #### Placement The pipe shall be lowered into the trench and placed into position in a manner that prevents damaging the joints or getting dirt inside the pipeline. The pipe shall be uniformly and continuously supported over its entire length on firm stable material. Blocking or mounding shall not be used to bring the pipe to final grade. Bell holes shall be excavated in the bedding material, as needed, to allow for unobstructed assembly of the joint and to permit the body of the pipe to be in contact with the bedding material throughout its length. #### Joints and connections All joints and connections shall be designed and constructed to withstand the design maximum working pressure for the pipeline without leakage and to leave the inside of the line free of any obstruction that may tend to reduce its capacity below design requirements. The connecting surfaces of the bell and spigot shall be thoroughly cleaned and dried before each joint is connected. The spigot recess, the rubber gasket, and the bell shall be lubricated with an approved gasket lubricant. After lubrication the gasket shall be thoroughly stretched when it is placed in the spigot groove so that there is a uniform volume of rubber distributed around the circumference of the pipe. The gasket shall not be twisted, rolled, cut, crimped, or otherwise damaged or forced out of position during closure of the joint. The position of the rubber gasket shall be checked after joint assembly, and if the gasket is not in the proper position, the pipe shall be withdrawn, the gasket checked to see that it is not cut or damaged, the pipe relaid, and the position of the gasket rechecked. If the pipe is laid on tangent, each joint shall be fitted together so that the end of the spigot of one pipe is as close to being in contact with the shoulder of the bell of the adjacent pipe as practicable. On curves, the maximum deflection at any one joint shall not exceed 3 degrees for pipe sizes 30 in. and less in diameter and 1-1/2 degrees for larger sizes. All fittings, such as couplings, reducers, bends, tees, and crosses shall be installed according to the recommendations of the pipe manufacturer. Fittings and appurtenances made of steel or other metals susceptible to corrosion shall be adequately protected by wrapping them with plastic tape or by applying a coating having high corrosion-preventative qualities. If plastic tape is used, all surfaces to be wrapped shall be thoroughly cleaned and then coated with a primer compatible with the tape before wrapping. ## Thrust blocks Thrust blocks must be formed against solid unexcavated earth that is undamaged by mechanical equipment. They shall be constructed of concrete, and the space between the pipe and the trench wall shall be filled to the height of the outside diameter of the pipe or as specified by the manufacturer. #### Testing The pipeline shall be thoroughly and completely tested at the design pressure for pressure strength and leakage. The line shall be slowly filled with water. Adequate provisions shall be made for air release while filling. Care shall be taken to bleed all entrapped air in the process. The pressure shall be slowly built up to the maximum design working pressure of the system. While this pressure is maintained, all exposed pipe, fittings, valves, hydrants, joints, appurtenances and covered parts of the line shall be examined for leaks. Any leaks shall be repaired and the system retested. It shall be demonstrated by testing that the pipeline and all valves, vents, surge chambers, and other appurtenances will function properly at design capacity. At or below design capacity there shall be no objectionable flow conditions. Objectionable flow conditions shall include water hammer, continuing unsteady delivery of water, damage to the pipeline, or detrimental discharge from control valves, vents, or stands. #### Backfill The material shall be brought up to about the same rate on both sides of the pipe and shall be compacted firmly around the pipe. If water packing is used, the pipeline shall be filled with water. The initial backfill shall be consolidated to achieve the density specified in table 6, or the material shall be placed in about 12-in. lifts or to the approximate spring line of the pipe, whichever is less. Saturation with internal vibration is an acceptable method of consolidating the primary backfill. The amount of water used for consolidation shall be controlled to insure no pooling of excess water. The wetted fill must be allowed to dry until firm before beginning the final backfill. Final backfill material shall be free of large rocks or boulders and shall be added to the trench in a manner that will not damage the pipe. This material need not be compacted, but it shall be mounded over the top of the trench in a manner that will leave the fill at ground level after settlement. Rolling equipment shall not be used to consolidate the final backfill. All special backfilling recommendations of the pipe manufacturer shall be followed. ## Repairs Individual pipe units may be repaired if defects result from imperfections in pipe manufacture or from accidental damage during handling. All repairs must be made by methods approved by the engineer. They must be sound and properly finished and cured. In addition, the repaired pipe must conform to the requirements of these specifications with respect to dimensions and tolerances. Hydrostatic tests may be required on any repaired pipe if deemed necessary by the purchaser. ## Basis of acceptance The acceptability of the pipeline shall be determined by inspections to insure compliance with all the provisions of this standard with respect to the design of the line, the pipe and markings, the appurtenances, and the minimum installation requirements. ## Certification and guarantee If requested by the State Conservation Engineer, the manufacturer must certify that the pipe meets the requirements specified in this standard. The installing contractor shall certify that the installation complies with the requirements of this standard. He shall furnish a written quarantee that protects the owner against defective workmanship and materials for not less than 1 year. The certification shall identify the manufacturer and markings on the pipe used. #### MATERIALS # Pipe classes Reinforced plastic mortar pipe shall be classified according to its rated operating head in feet of water. The classes are designated H50, H100, H150, H200, H250, H300, H350, H400, H450, and H500. #### Lot definition Material A lot, as used in this standard, means 100 lengths of pipe or fraction thereof of identical class and size manufactured in a single production run. A unit means a length of pipe or part of a length of pipe. ## Pipe material Reinforced plastic mortar pipe shall consist of an aggregate filler, a glass fiber reinforcement, and a resin binder. The aggregate filler shall be a siliceous natural sand conforming to the requirements for concrete aggregate (ASTM-C-33), but the requirements for gradation shall not apply. The reinforcement shall be manufactured from continuous rovings of borosilicate-type glass fibers with a polyester compatible finish. The binder shall be a catalyzed isophthalic polyester resin with or without inorganic fillers. #### Physical requirements All pipe furnished under these specifications shall meet the test requirements for soundness, hoop tensile strength, and stiffness factor specified in ASTM-D-3517. Tests shall be performed by the manufacturer at his expense. Certified copies of the results of the tests shall be furnished to SCS upon request of the State Conservation Engineer. ## Gaskets Rubber gaskets, as used in these specifications, include natural rubber, synthetic rubber, or a blend of both. Rubber gaskets shall be extruded or molded and cured in such a manner that any cross section will be dense, homogeneous, and free from porosity, blisters, pitting, and other imperfections. They shall conform to the requirements specified in ASTM-D-1869 or C-361, Section 5.9. ## Joints Pipe shall be furnished with bell and spigot ends for joining; a solid, uniform cross section rubber gasket shall be used as the sealing element. The gasket shall be contained in a groove and shall not support the weight of the pipe when two sections are joined. The joint assemblies shall be formed so that the pipe forms a continuous watertight conduit when the sections are drawn together. They shall provide for slight movements of any pipe in the pipeline due to expansion, contraction, settlement, or lateral displacement. The rubber gasket shall be the sole element of the joint depended upon to provide a watertight seal. The volume of the gasket shall be less than 85 percent of the volume of the annual space in which the gasket is to be contained with the engaged joint in concentric position. The gasket shall not be stretched more than 20 percent of its original length when full seated in the groove. The gasket shall be of such diameter that when the outer surface of the spigot and the inner surface of the bell come into contact at some point in their periphery, the deformation in the gasket shall not exceed 40 percent at the point of contact nor be less than 15 percent at any point. Stretched gasket diameters shall be calculated as being the original diameter divided by the square root of (1+X), where X is the percent of gasket stretch divided by 100. Determination of gasket deformation in an offcenter joint shall be based on the most unfavorable limits of the pipe manufacturer's tolerances. ### Fittings Fittings, such as tees, elbows, wyes, reducers, and adaptors may be (1) reinforced plastic mortar fittings fabricated by the pipe manufacturer from pipe meeting the requirements for soundness specified under "Physical Requirements," (2) cast iron fittings, or (3) fabricated steel fittings and RPM pipe shall be made with rubber gasket joints. All steel fittings shall be protected from corrosion by an epoxy resin coating, as described under Class A coatings under "Irrigation Water Conveyance Pipeline (Steel)," 430-FF. #### Dimensions Length, inside diameter, and wall thickness shall conform to the standards in ASTM-D-3517. Minimum wall thicknesses are given in table 6. ## Workmanship The inside surface of the pipe shall be free of bulges, dents, ridges, grooves, or other irregularities that have a depth or a height of more than 1/8 in as measured from the normal level of the surrounding surface. Joint sealing surfaces shall be free of dents and gouges that can affect the integrity of the joints. No glass fiber reinforcement shall be exposed on either the interior or the exterior surface of the pipe. # Markings Each length of pipe and each reinforced plastic mortar fitting shall bear the size and class of pipe, the date of manufacture, and the name or trade mark of the manufacturer. Table 3. - Hydrostatic pressure test requirements | | Hydrostatic proof measure | | | |-------|---------------------------|--------|--| | Class | Water
head (ft) | lb/in2 | | | H50 | 100 | 43 | | | H100 | 200 | 87 | | | Н150 | 300 | 130 | | | H200 | 400 | 173 | | | Н250 | 500 | 217 | | | Н300 | 600 | 260 | | | Н350 | 700 | 303 | | | H400 | 800 | 347 | | | H450 | 900 | 390 | | | н500 | 1000 | 434 | | Table 4. Minimum wall thickness for pipe | Nominal pipe diameter | Minimum wall thickness | | |-----------------------|------------------------|------| | in. | mm | in. | | 8 | 4.32 | 0.17 | | 10 | 4.32 | .17 | | 12 | 4.57 | .18 | | 14 | 4.83 | .19 | | 15 | 4.83 | .19 | | 16 | 5.08 | .20 | | 18 | 5.33 | .21 | | 20 | 5.33 | .21 | | 21 | 5.33 | .21 | | 24 | 6.10 | .24 | | 27 | 6.60 | .26 | | 30 | 7.37 | .29 | | 33 | 8.13 | .32 | | 36 | 8.89 | .35 | | 39 | 9.65 | .38 | | 42 | 10.16 | .40 | | 45 | 10.92 | .43 | | 48 | 11.68 | .46 | | 51 | 12.45 | .49 | | 54 | 13.21 | .52 | Table 5 - Backfill material classes | Material | Description | |----------|---| | Class A | Sand, gravelly sand, or silty sand containing a maximum of 10 percent fines (material passing the No. 200 sieve and having 100 percent passing the 1 in screen and at least 60 percent passing the No. 4 sieve). Fines must be nonplastic. (SW,SP,SW-SM, SP-SM) | | Class B | Silty or clayey sand or gravelly sand having 10 to 50 percent fines, 1 in. maximum size, and at least 75 percent passing the No. 4 sieve. Maximum plasticity index (PI) of 7. (SM, SC) | | Class C | Sandy or gravelly silt or
clayey silt, sandy or gravelly
clay or silty clay containing
50 to 100 percent fines and | | | having 1 in. maximum size. Maximum plasticity index (PI) of 7. (ML, CL, CL-ML) | |-------------|---| | Random fill | Any soil, such as the material removed from an excavation. All cobblestones and rocks larger than 6 in. in diameter | must be removed. _____ Table 6 - Compaction specifications | - | | | | |--------------------|-----------|--|--| | Type of compaction | Material | Performance | Method | | 1 | Class A | 80 percent of relative density by compacting material in 4-in. lifts, (ASTM-D-2049). | Four passes on 4-in. thick lifts with vibrating compactor weighing at least 200 lb and having an impact of at least 2,000 lb at 3,500 v/min. | | 1 | Class B/C | 95 percent of maximum density obtained by ASTM D-698. Material must be within 3 percent of optimum moisture and compacted in 4-in. lifts | None. | | 2 | Class A | 70 percent of relative density when compacted in 4-in. lifts (ASTM-D-2049). | Two passes on 4 in. thick lifts with vibrating compactor weighing at least 200 lb and having an impact of at least 2,000 lb at 3,500 v/min. or by complete saturation of the backfill material with an internal vibration during saturation. | | 2 | Class B | 90 percent of max-
imum density ob-
tained by AST-D- | Two passes on 2-in. thick lifts with | | | | 698. Material must be within 3 percent of of optimum moisture and compacted in 4-in. lifts. | vibrating compactor weighing at least 200 lb. and having an impact of at least 2,000 lb at 3,500 v/min. | |---|-----------|--|---| | 2 | Class C | 90 percent of maximum density obtained by ASTM-D-698. Material must be within 3 percent of optimum moisture and compacted in 4-in. lifts | None | | 3 | Class A | None | Carefully place material with a small shovel in lifts; make sure that all voids are filled with soil. Tamping with the shovel is done within 6 in. of pipe. | | 3 | Class B/C | 85 percent of maximum density obtained as recommended in ASTM-D-698. Material must be within 2 percent above to 5 percent below optimum moisture and compacted in 6in., maximum lifts. | None |